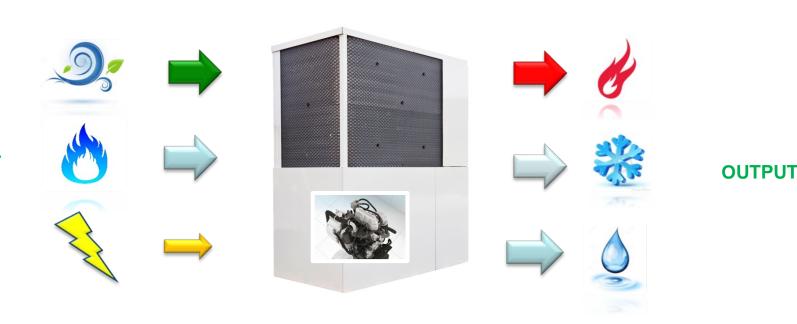
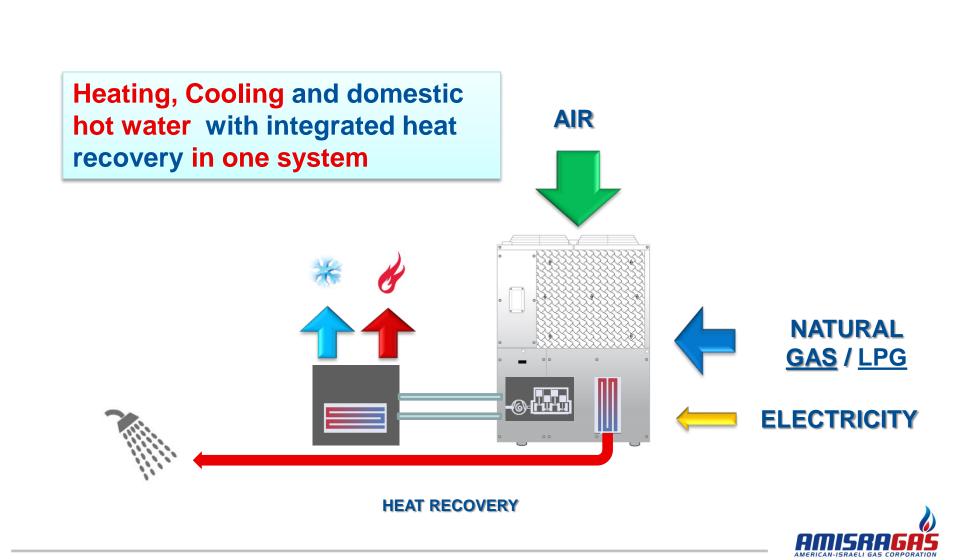


Introduction to GAS HEAT PUMPS technology

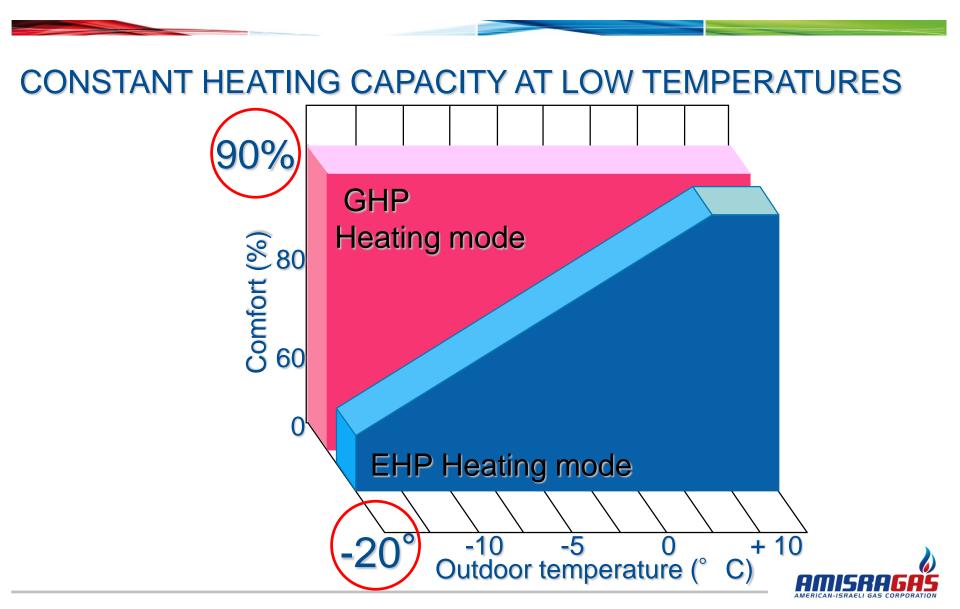
GAS HEAT PUMPS Technology

ONE SYSTEM – MANY ADVANTAGES

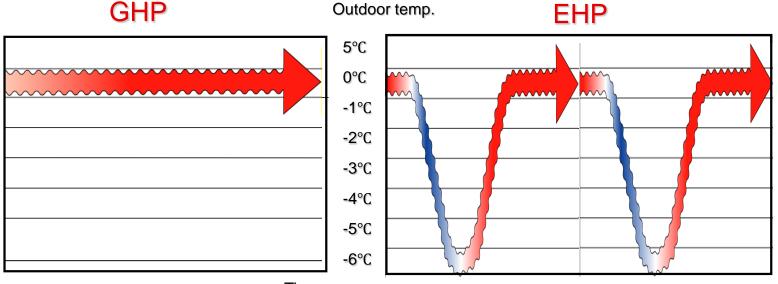



The Gas Heat Pump (GHP) is a compression heat pump driven by a gas combustion engine

GHP uses the renewable energy of air + primary energy (NG or LPG gas) to provide heating, cooling and domestic hot water.


INPUT

GAS HEAT PUMP Integrated solution



REDUCED NUMBER OF DEFROST CYCLES

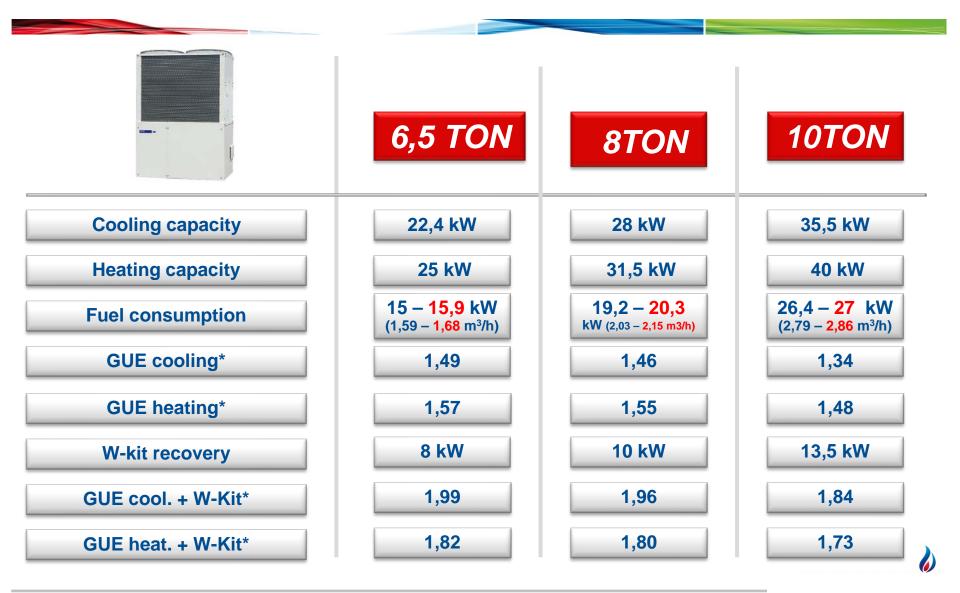
Time

Defrost may occur in case of strong humidity area

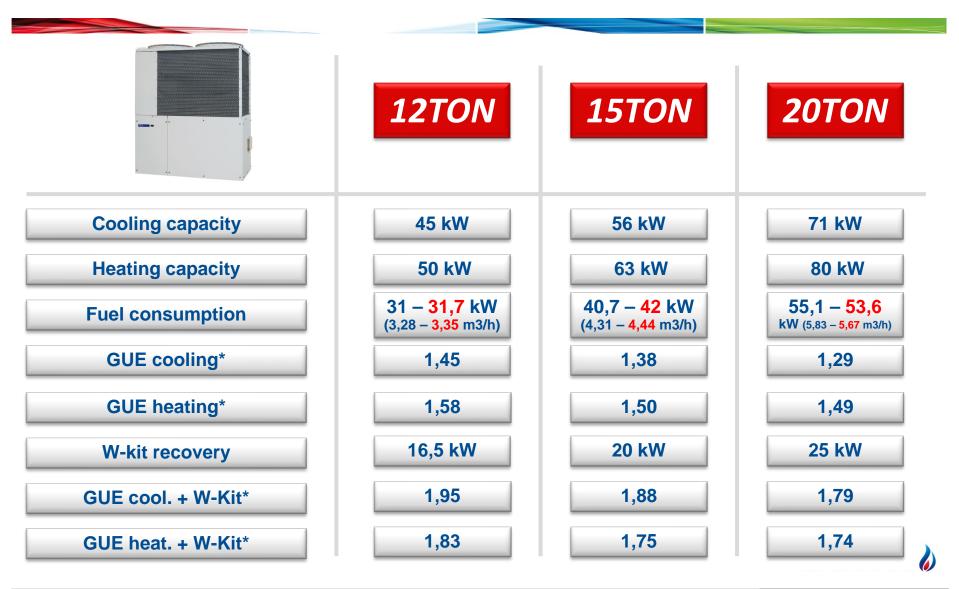
<u>Reduced comfort because</u> of the cycle inversion

Time

Product line up

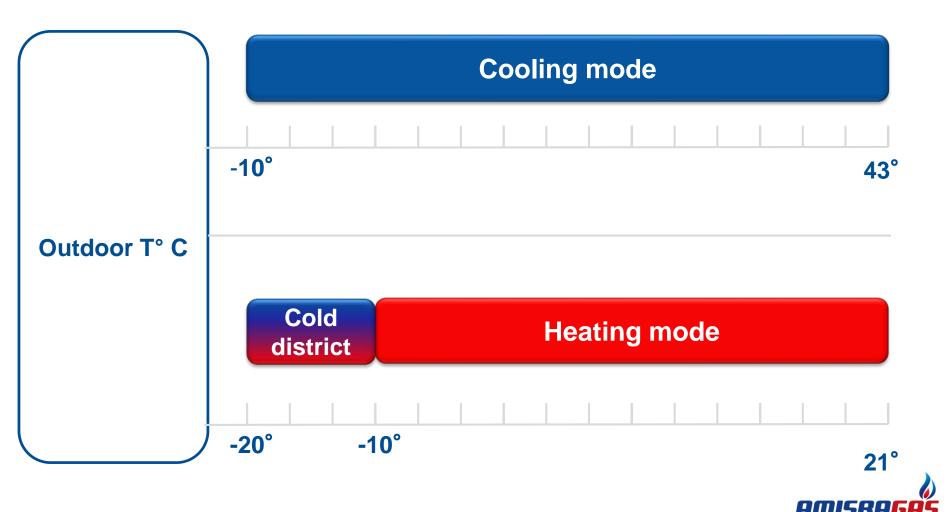


45-63-71 kW cooling Combination Multi: up to 160 kW



22,4-28-35,5kW cooling

GHP Small sizes - performances



GHP Big sizes - performances

Outdoor temperature operation range

AMERICAN-ISRAELI GAS CORPORATIO

Wall built-in controller

Wall built-in simplified controller

Standard central controller

FOARIN

I-Touch Controller

Central **ON/OFF** controller

Weekly Timer

GHP

Air to water layout: Yoshi AWS features

GHP

Air to water layout: Yoshi AWS features

AWS is a sofisticated heat exchanger AIR to WATER:

- Modulating refrigerant capacity according to building demand through the return water T° on the primary circuit.
- Built-in pump control (only for single AWS)
- Built-in antifreeze protection, flow and pressure switches
- Built-in timer
- Electronic expansion valve

CONSTANT WATER FLOW RATE

AWS TWIN:

- Same single AWS settings and dimensions
- One device can provide up to 150 kW heating -126 kW cooling
- Reduced installation spaces and costs
- Only for GHP big sizes combi (16-20-25hp)

Air to water layout: Yoshi AWS features

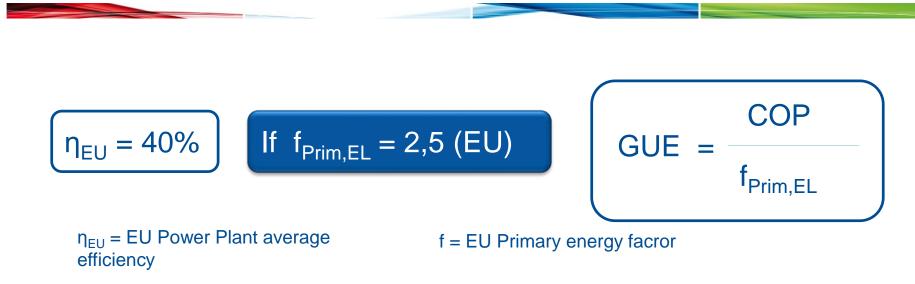
DIGITAL INPUTS:

- GHP ON-OFF mode setting
- HEATING/COOLING mode setting

ANALOGUE INPUTS:

- setpoint T° regulation with 4-20mA signal
- capacity management with 4-20mA signal

DIGITAL OUTPUTS:


alarms/errors status

COMMUNICATION PROTOCOL:

• ModBus RTU

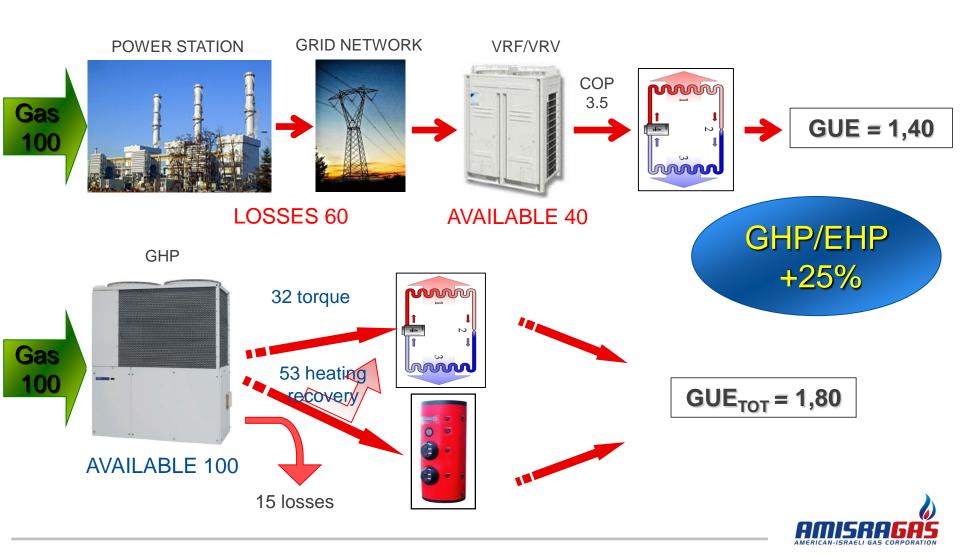
ENERGY ANALYSIS Heat pumps comparison

After converting the heat pump consumption into primary energy, you can proceed to the calculation of heat pump energy performance.

Ex. VRF COP = $3,5 \rightarrow \frac{3,5}{2,5}$ = 1,4 VRF GUE

At this point we can compare two heat pumps run on different sources (natural gas, electricity, etc ...)

SYSTEMS COMPARISON Aisin GHP performances table - AWS


			conditions external T°C = 35°C DB (dry bulb) water T°C = 7°C WB			
	Capacity (kW) E	Consumption (kW) E	Cooling mode GUE E	W-kit (kW)	GUE E Total	
30%	14,1	9,9	1,43	4,94	1,93	
50%	20,7	15,1	1,37	7,55	1,87	
70%	28,9	21,7	1,33	10,85	1.83	
100%	41,5	32,0	1,30	16,00	1,83 (1,80)	
					\longrightarrow	

W-kit contributes to enhance

	GHP performances			conditions external T°C = 27°C DB (dry bulb)			
			water T°C = 7°C W	В			
			Cooling mode				
	Capacity (kW) E	Consumption (kW) E	GUE E	W-kit (kW)	GUE E Total		
30%	14,7	7,2	2,04	3,60	2,54		
50%	21,9	11,9	1,84	5,95	2,34		
70%	31,0	18,2	1,70	9,10	2,20		
100%	44,0	27,2	1,62	13,60	2,12		
					\longrightarrow		

SYSTEMS COMPARISON EU regulations and technical standard

conditions					
external T°C = 35°C DB (dry bulb)					
water T°C = 7°C WB					

conditions						
external T°C = 27°C DB (dry bulb)						
water T°C = 7°C WB						

Outdoor T°C: +35°C, +27°C

and

Water T°: +7°C

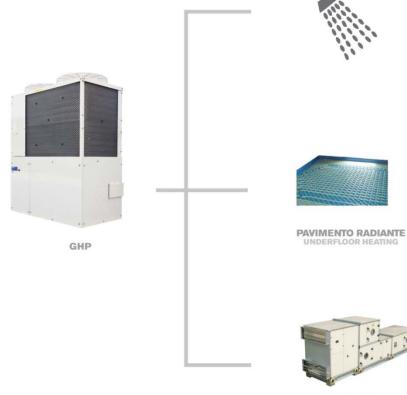
Are conditions set by the following **European Regulations**:

- Ecolabel 811/2013

Commission Regulation (EU) No. 811/2013 of the Commission of February 18, 2013 as far as labeling is concern of energy equipment for space heaters and combination heaters, sets of equipment for space heating, devices for temperature control and solar devices and sets of combination heaters, devices for temperature control and solar define the energy class of the appliance.

- Ecodesign 813/2013

Commission Regulation (EU) No. 813/2013 of the Commission of 2 August 2013, laying down rules for the implementation of Directive 2009/125 / EC of the European Parliament and of the Council on the specific eco-design requirement of space heaters and combination heaters.


EU technical standard for GHP: EN 16905

In the GHP total energy efficiency calculations, the technical standard considers also the engine thermal recovery.

This recovery contributes to increase GHP energy efficiency and it's available during year round in different percentages.

U.T.A. A.H.U. WKIT ensures high performances at different loads

The heat is fully recovered (only for gas engine driven heat pumps)

The recovered heat can be used for: Free domestic hot water Buildings heating Air Handling Unit post-heating

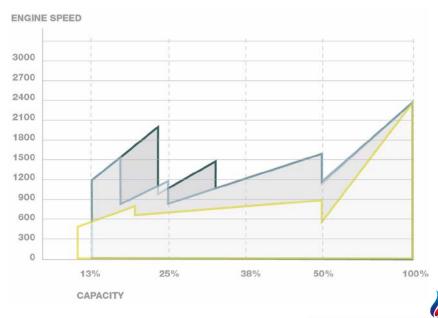
AMERICAN-ISRAELI GAS CORPORATION

GHP

Hot sanitary water production (It/min)

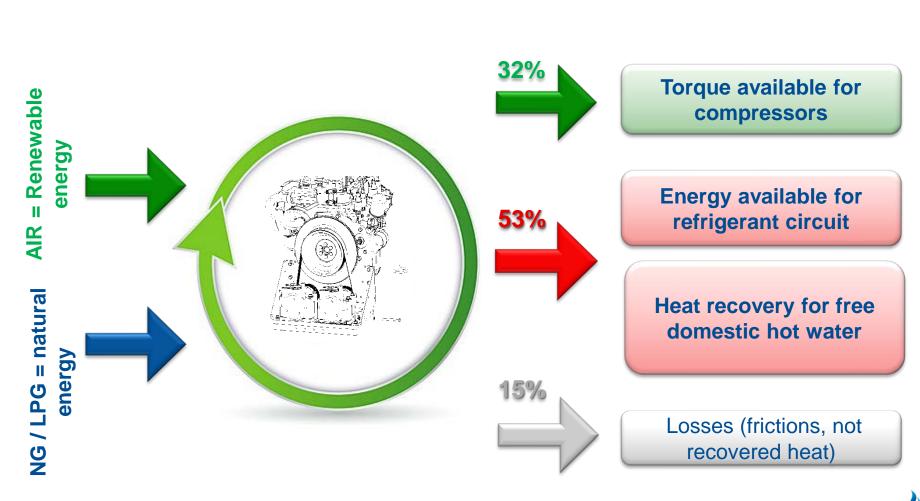
	IN/OUT (T°C)							
	55/60	50/60	40/60	30/60	20/60			
WKIT - 8HP	23,0	11,5	5,7	3,8	2,9			
WKIT - 10HP	28,7	14,4	7,2	4,8	3,6			
WKIT - 13HP	37,4	18,7	9,3	6,2	4,7			
WKIT - 16HP	46,0	23,0	11,5	7,7	5,7			
WKIT - 20HP	57,5	28,7	14,4	9,6	7,2			
WKIT - 25HP	71,8	35,9	18,0	12,0	9,0			

GHP strong points

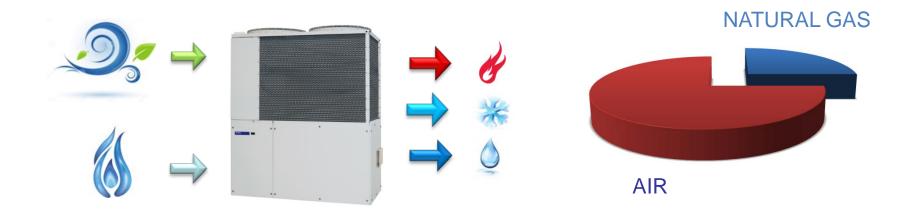


GHP High Seasonal Performances

- Variable capacity scroll compressors
- Wide engine modulation range (2800 down to 600 rpm)
- Higher performances at partial loads
- Total energy recovery



AMERICAN-ISRAELI GAS CORPORATIO


GHP

Use of air as renewable source of energy

EU DIRECTIVE 2009/28/CE declares that

aerothermal energy is a renewable source of energy

Aisin GHP uses aerothermal energy

GHP Reduction in CO₂ emissions

- GHP reduces CO₂ emissions up to 40% when compared to traditional systems
- 1 year = up to 17 Ton of CO₂ savings
- AISIN GHPs running in Europe = more than 68.000 Ton of CO2 savings/year

Higher building efficiency rating

- Higher seasonal performances
- Possible use of aerothermal energy as renewable quota (according to local standards)
- Reduced defrost cycles
- Free production of domestic hot water (heat recovery)
- Very low electric consumptions (1/10 compared to electric VRV)

Low running costs

GHP allows you to improve buildings energy class \rightarrow increased building value on real estate market

Low running costs

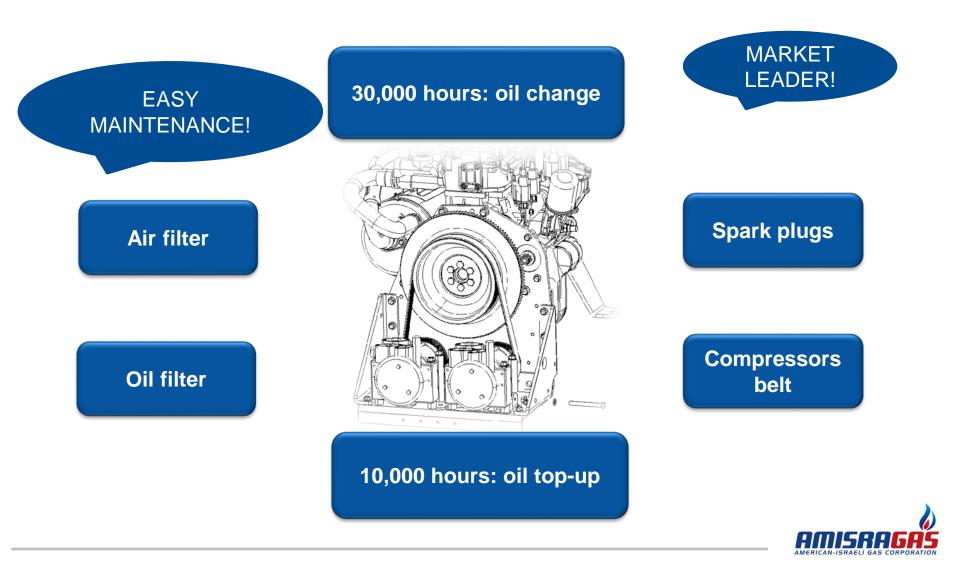
LOW RUNNING COSTS DUE TO

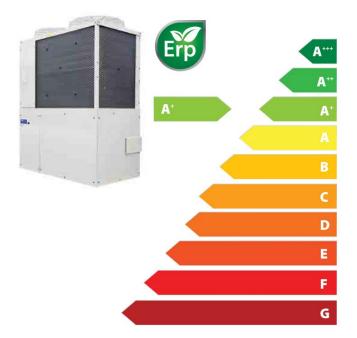
Use of aerothermal energy

Low primary energy consumption

Refrigerant flow management through variable engine speed and variable compressors capacity

No need of expensive power sub-station installation


Engine cooling and exhausts heat recovery


EASY and LOW COST MAINTENANCE

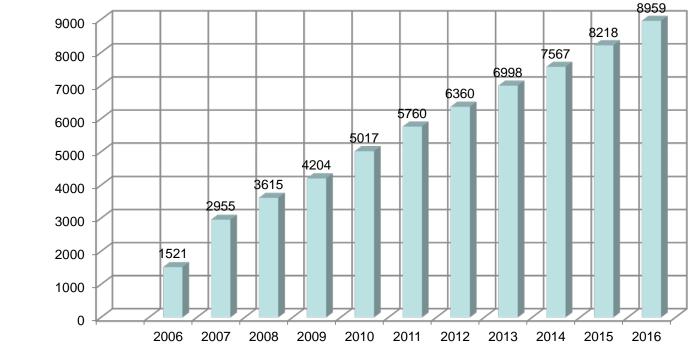
GUARANTY TECHNICAL SUPORT 24/7

Eco Label and Eco Design EU dir. 811/2013 and 813/2013

Aisin Air-to-Water line up are in compliance with European Directives standards.

Return On Investment 80 TON GHP

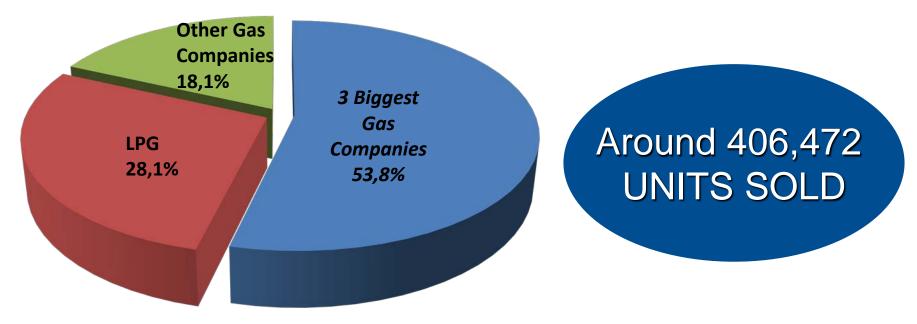
۹						•			-
Annual electricity fixed costs		€ - €	. € - €	-	€ -	€ -	€ -	€	-
Annual maintenace costs	_	€ 1.445,4 € 31	7,3 € - €	1.762,7	WRITE BELOW	WRITE BELOW	WRITE BELOW	€	-
Fill in manually maintenance costs					€ 2.000,00	€ 500,00		€	2.500,0
Cost of electricity consumption: Total cost electr. consumption	2.568 1.165			1.786,8					24.516,3
Cost of gas consumption:	2.366 1.165			1.700,0					24.510,5
Total costs of gas consumption	2.568 1.165			13.493,2					5.108,0
TOT. ANNUAL WORKING HOURS	3.733	1							
TOT. ANNUAL RUNNING COSTS		3	€	17.042,7					32.124,4
									 ,,
ANNUAL CO2 PRODUCTION (fuel+electrical) in	Tn			91,0					126,1
- Pay	back -								
		45.300,00							
Initial cost difference	€	45.300,00							
CO2 SAVINGS / YEAR	Tn	-35							
CO ₂ savings/year compared	%	-28%							
to competitor's system	,	2070							
Payback in €	€	15.082							
	%	47%							
Payback time	Years	3,00							
Primary Energy Savings	kWh	181.309				Software deveolped b	У		
						IATIZZAZ			
CO2 SAVINGS / YEAR	Ton.	-71							
					Gas Heat Pun	pean Distributor	alsin ator (MCHP)		
Tot. energy recovery/year	kWht	167.989				Version 2.09 S EN			
Feenemia equings [6] (upor with W/K/T	€	20.878				28/04/17			
Economic savings [€] /year with W-KIT	%	55%							
Payback time with W-KIT	Years	2,17							
Primary Energy Savings	kVVh	363.906							


- Low energy efficiency
- High electric demand and high primary energy consumption
- Boiler room necessary
- Only air-to-water layouts

- High primary energy consumption
- Performances losses (up to 35%)
- System oversizing to ensure building demand
- High electricity demand
- Frequent defrost cycles
- Energy performances in cooling mode dramatically drop off
- No reliable system
- High noise levels
- Unit stops for seasonal switch mode (heating to cooling and vice-versa)
- Huge installation spaces needed, evaporative tower

Sales q.ty 2006-2016

Source: GHP Japanese consortium 4 GHP manufactures declared export quantities in Europe



YEAR

NUMBER OF UNITS GHP PROGERSSIVE

Main sales channels in Japan are **NATURAL GAS and LPG Companies**

GHP REFERENCES WORLDWIDE

AISIN GHP REFERENCES GERMANY – AMAZON Logistic Center: 1,7 MW (27 GHP) 540 TON

AISIN GHP REFERENCES GERMANY – AMAZON Logistic Center: 1,7 MW (27 GHP)

AISIN GHP REFERENCES UK: London Langdon Park School: 71 kW + AWS(20TON)

AISIN GHP REFERENCES BELGIUM – Showroom : 35,5kW + Dx (10 TON)

Single GHP Small size

AISIN GHP REFERENCES BELGIUM - Supermarket : 56kW + Dx (15TN)

Single GHP Big size

AISIN GHP REFERENCES GERMANY – Showroom: 224kW + Dx (64 TON)

GHP combination multi Direct expansion layout (DX)

AISIN GHP REFERENCES GERMANY – Industry: 710kW + AWS -200 TON

GHP combination multi Air-to-water layout (AWS)

AISIN GHP REFERENCES GERMANY – Gas Company: 56 kW + Dx (15TON)

GHP life-span record: 80,000 hours

AISIN GHP REFERENCES GREECE – Hotel: 560 kW + AWS (150TON)

AISIN GHP REFERENCES SWITZERLAND - Gas company: 28kW + AWS(8 TON)

Swiss gas company followed German example

AISIN GHP REFERENCES BELGIUM – Offices: 112 kW + Dx (30TON)

Preservation of buildings aesthetics

AMERICAN-ISRAELI GAS CORPORATIO

AISIN GHP REFERENCES POLAND – Church: 56 kW + Dx (15 TON)

Key account

AISIN GHP REFERENCES BELGUIM – Industry: 112 kW + Dx (30 TON)

Systems-combined applications

AISIN GHP REFERENCES POLAND – Business Center: 71 kW + AWS(20TON)

Live show events for professionals

AISIN GHP REFERENCES POLAND – Industry: 168 kW – Dx (50TON)

Aisin GHP for Toyota industries

AISIN GHP REFERENCES HUNGARY – Industry: 504 kW + AWS (135TON)

Non-stop operating A/C

AISIN GHP REFERENCES BULGARIA – Hospital: 112 kW + Dx (30TON)

AISIN GHP REFERENCES SLOVAKIA – MTF University: 1207kW + AWS(345 TON)

EU community project

AISIN GHP REFERENCES SLOVENIA – Lifeclass Hotels: 426 kW + AWS (120 TON)

AISIN GHP REFERENCES ITALY - Toyota car dealer: 112 kW + AWS(30 TON)

AISIN GHP REFERENCES ITALY - Nursing home: 336 kW + AWS(96 TON)

Low noise levels

AISIN GHP REFERENCES Italy

Country houses Wine cellars

AISIN GHP REFERENCES Italy

AMARICAN-ISRAELI GAS CORPORATION

AISIN GHP REFERENCES ITALY – Business Center: 710 kW + AWS (200TON)

Mixed-use buildings

AISIN GHP REFERENCES MALEYSIA – Hotel: 1.420kW + AWS (405 TON)

AISIN NEW HQ JAPAN – Kariya City (Nagoya): 7.074kW+ Dx (2.021TON)

AISIN GHP REFERENCES JAPAN – Tokyo Kenzai University: 900kW+ Dx(257TON)

Standard layout type

AISIN GHP REFERENCES KOREA – Church: 4.480kW + Dx (1.280TON)

תודה לך על תשומת הלב

